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Goals

The semi-simple algebra K(n) of ribbon graphs is constructed from A = C(Sn)⊗2, by
“quotienting” it by the Sn-diagonal adjoint action on the tensor product;

• There are vectors Tr spanning the center of K(n) that have integral matrices.

• Tr are useful to identify the dimensions of the WA - matrix decomposition of K(n)

• These dimensions are nothing but the square of Kronecker coeff.: they can be
computed by a triangularization algorithm applied on the stack of matrices of the Tr ’s
[Ramgoolam & BG [2010.04054]].

We may ask:
What is the most generic setting on semi-simple algebras for which this result generalizes?

(finding a ‘nice’ basis of the centre of an ‘invariant’ semi-simple sub-algebra
of a given algebra)
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K(n), the graph algebra

• Group algebra C(Sn), i.e. an element of which writes a =
∑
σ∈Sn λσσ, λσ ∈ C

• Back to coset formulation: Consider the orbits

(σ1, σ2) ∼ (γσ1γ
−1, γσ2γ

−1) (1)

• Define K(n) ⊂ C(Sn)⊗2 is the vector space over C

K(n) = SpanC

{ ∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1, σ1, σ2,∈ Sn

}
(2)

→Fact : an orbit Orb(r) is 1-1 correspondence with a base vector Er of K(n).
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K(n), the graph algebra

• Take a base element of K(n)

Aσ1,σ2 =
∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1 (3)

• Associative multiplication

Aσ1,σ2Aσ3,σ4 = coeff .
∑
τ∈Sn

Aσ1τσ3τ−1, σ2τσ4τ−1 (4)

• There is a pairing

δ2(⊗2
i=1σi ;⊗2

i=1σ
′
i ) =

2∏
i=1

δ(σiσ
′−1
i ) (5)

that extends by linearity to K(n) and that is non-degenerate.

Theorem (BG, Ramgoolam ‘17)

K(n) is an associative semi-simple algebra with unit element.
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∗-Algebra and states

Consider A an associative algebra with unit over the complex field C, its neutral element
will be noted e.

We call involution within A, a bijection x → x∗ which is additive, semi-linear and an
involutive anti-automorphism. The pair (A, ∗) is called star-Algebra.

C+(A) is the set of elements of the form
∑

i∈F xix
∗
i (where F finite). It is a real

convex cone within SA(A) (set of self-adjoint elements, i.e. such that x = x∗).

State(A) is the set of linear forms f ∈ A∗, the dual of A, such that

z ∈ C+(A) =⇒ f (z) ≥ 0 and f (1) = 1, (6)

where 1 is the constant function on A.

A semi-positive non degenerate state (SPS) f ∈ State(A) satisfies

z ∈ C+(A) and f (z) = 0 =⇒ z = 0. (7)

We also call a SPS, a faithful state.
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A an ∗-algebra and Hilbert space

Notable facts:

1 We start with a finite dimensional ∗-algebra A and remark that e∗ is neutral so that
e∗ = e.

2 Now, A is equipped with a SPS ϕ as in (7). With ϕ, we build the following 2-form

g(x , y) = 〈x |y〉 = ϕ(x∗y) (8)

which satisfies
〈ax |y〉 = 〈x |a∗y〉 (9)

3 One checks (see below) at once that (x , y)→ 〈x |y〉 a positive definite hermitian
form (inner product) therefore (A, g) is an Hilbert space. We have
|〈x |y〉| ≤ ||x || ||y || and ϕ(x∗) = ϕ(x).

4 This inner product satisfies identically
ϕ(x∗(a.y)) = 〈x |a.y〉 = 〈a∗.x |y〉 = ϕ((a∗.x)∗y) and from that, we get that A is
semi-simple.
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Proofs

Proof of 2 and 3.– Linearity on the right is straightforward. To show hermitian symmetry,
we first compute g(x + y , x + y) = g(x , x) + [g(x , y) + g(y , x)] + g(y , y) which proves
that

=(g(y , x)) = −=(g(x , y)). (10)

Then, from,

g(x + iy , x + iy) = g(x , x) + [g(x , iy) + g(iy , x)] + g(iy , iy) =
g(x , x) + i [g(x , y)− g(y , x)] + g(y , y) (11)

we get i [g(x , y)− g(y , x)] ∈ R meaning <([g(x , y)− g(y , x)]) = 0. Then
<(g(y , x)) = <(g(x , y)) with (10) shows

g(y , x) = g(x , y) (12)

therefore, with y = e, we get ϕ(x∗) = g(x , e) = g(e, x) = ϕ(x). The inequality
|g(x , y)| ≤ ||x ||.||y || is a consequence of Cauchy-Schwartz theorem.
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Linear automorphism group on A

• Consider a finite group H ⊂ AutC(A) of linear automorphisms of the ∗-algebra A i.e.
automorphisms of algebra which commute with the ∗-involution

∀(h, a) ∈ H ×A, h.(a + b) = h.a + h.b
∀(h, a, b) ∈ H ×A×A, h.(ab) = (h.a)(h.b)
∀(h, a, λ) ∈ H ×A× C, h.(λa) = λh.a
∀(h, a) ∈ H ×A, (h.a)∗ = h.a∗ (13)

• ϕ is called H-invariant if

∀(h, a) ∈ H ×A, ϕ(h.a) = ϕ(a) (14)

In other words, ϕ does not see the action of H.
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Linear automorphism group on A

Let ϕ be a H-invariant SPS on A a ∗-algebra

1 H is a group of isometries for g(x , y) = 〈x |y〉:

〈h.a|h.b〉 = ϕ((h.a)∗h.b) = ϕ((h.a∗)(h.b)) = ϕ(h.(a∗.b))
= ϕ(a∗.b) = 〈a|b〉 (15)

2 Consider the elements H.a :=
∑

h∈H h.a. Form the vector space κ(H,A) made of
orbits (with multiplicities) linearly generated by the vectors H.a, for all a ∈ A:

κ(H,A) = SpanC{H.a}a∈A (16)

then κ(H,A) is a subalgebra of A which is, moreover ∗-closed.

If A = C(Sn)⊗d , κ(H,A) = K(n) the algebra of ribbon graphs, for a particular ϕ
and H (will prove this in the next section).
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κ(H,A) is an ∗-algebra

Proof of 2.– We check that the product of vectors stays in κ(H,A)

(H.a)(H.b) =
∑

h,g∈H

(h.a)(g .b) =
∑

h,g∈H

h.
(

(a)(h−1g .b)
)

=
w=h−1g

∑
h∈H

h.

(∑
w∈H

a(w .b)

)
=
∑
w∈H

H.(a(w .b)) (17)

Moreover, h.a∗ = (h.a)∗ implies (H.a)∗ = H.a∗, so κ(H,A) is ∗-closed.
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What if A C∗-algebra ?

Remark.– (i) The reader should be aware that (A, g) is not necessarily a C∗-algebra1. In
fact, one has the following equivalent conditions:

(A, g) is a C∗-algebra (i.e. for ||x || =
√

g(x , x))

dimC(A) = 1

Elementary proof of (i).– A finite dimensional C∗-algebra A is a (finite) direct sum of
blocks which are C-algebras of matrices i.e.

A = ⊕m
i=1M(ni ,C) (18)

(see, e.g. [?] Theorem III.1.1). The block, being simple algebras, are therefore two-sided
ideals. Hence, decomposing 1A according to (18) yields

1A =
m∑
i=1

ei (19)

if we had m > 1, this would entail that e1 and e′2 =
∑m

i=2 ei be two non-zero orthogonal
projectors (orthogonality is proved by means of (9)). Hence, from
||e1|| = ||e1 + e′2|| = ||e1 − e′2|| = 1 we see that m = 1 and n1 = 1.

1See discussion in https://math.stackexchange.com/questions/3964927.
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What if A C∗-algebra ?

(ii) However, we can make A a C∗-algebra for the sup norm ||a||g = sup||ξ||=1 ||a.ξ||.

• If A is a C∗-algebra then κ(H,A) is a C∗-algebra.
Proof: This is the consequence of the general fact that an ∗–closed subalgebra of a
C∗-algebra is a C∗-algebra. [Bourbaki Ch 8]
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Structure constants, Orbits

• Any basis vector of κ(H,A) expands as

H.a :=
∑
h∈H

h.a = |Aut(a)|
∑

a′∈Orb(a)

a′ (20)

where Aut(a) = {h|h.a = a} ⊂ H is the automorphism subgroup of H that leaves a
invariant.
• Orbit-stablizer theorem, we know that |Aut(a)| = |H|/|Orb(a)|. Also ∀b ∈ Orb(a),
Aut(a) ≡ Aut(b), thus |Aut(a)| is independent of the representative element in the orbit.

Structure constants. We introduce the following elements:

Ea =
1

|H|
∑
h∈H

h.a =
1

|Orb(a)|
∑

a′∈Orb(a)

a′ (21)

and inspect the structure constants

EaEb =
∑
c

C c
abEc . (22)

We want a expansion of C c
ab in terms of orbits of the group action.
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Structure constants and central elements

EaEb =
1

|H|2
∑
g∈H

∑
h∈H

(g .a)(h.b) =
1

|H|2
∑
g∈H

∑
h∈H

g .(a(g−1h.b))

=
1

|H|2
∑
g∈H

∑
h∈H

g .(a(h.b)) (g−1h→ h)

=
1

|Orb(b)|
1

|H|
∑

b′∈Orb(b)

|H|
|Orb(a.b′)|

∑
d∈Orb(a.b′)

d

=
1

|Orb(b)|
∑

b′∈Orb(b)

∑
c

1

|Orb(a.b′)|δ(Orb(c),Orb(a.b′))
∑

d∈Orb(a.b′)

d

=
1

|Orb(b)|
∑
c

1

|Orb(c)| ·
∑

d∈Orb(c)

d
∑

b′∈Orb(b)

δ(Orb(c),Orb(a.b′))

=
1

|Orb(b)|
∑
c

Ec

( ∑
b′∈Orb(b)

δ(Orb(c),Orb(a.b′))
)

(23)

where δ(Orb(p),Orb(q)) is the Kronecker delta on orbits. Thus
C c
ab = 1

|Orb(b)|
∑

b′∈Orb(b) δ(Orb(c),Orb(a.b′)) with∑
b′∈Orb(b)

δ(Orb(c),Orb(a.b′)) =

Number of times the right multiplication of elements in the orbit b
with a fixed element in the orbit a (to the left) produces an element in orbit c.
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Structure constants and central elements

There exist particular elements in A such that

Ta = |Orb(a)|Ea (25)

For these elements, we have

TaEb = |Orb(a)|
∑
c

C c
abEc =

∑
c

(Ma)cbEc (26)

The following statement is straightforward.

Proposition

Then, for any a ∈ κ(H,A), the matrix elements (Ma)cb are non negative integers.

Question:
Are there some Ta that generate the center of κ(H,A) ?
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A a group algebra

In the case that A = C(G),

→ Consider G a finite group, and A = C(G) its group algebra.
→ Case of interest A = C(G)⊗d ' C(G×d) is an algebra. We write for simplicity
G = G×d .
• ∗-involution on A

X ∗ =
∑
g∈G

āgg−1 , (27)

• PSP ϕ: Given X =
∑

g∈G agg ∈ A, ϕ : A → C

ϕ(X ) := ae , pick the coeff of the identity

X ∗X ∈ C(A), ϕ(X ∗X ) =
∑
g∈G

∑
h∈G

āgahϕ(g−1h) (28)

pick all coefficients such that [e = g−1h] ⇒ (g = h). Thus ϕ(X ∗X ) =
∑

g=h |ah|2 ≥ 0 .

• (A, ∗) is a ∗-algebra that is semi-simple. Semi-simpliciy feature is mainly the Maschke
theorem (let G be a finite group and k a field whose characteristic does not divide the
order of G . Then k[G ], the group algebra of G , is semisimple).
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A a group algebra

• δ is the Kronecker delta function on G (δ(g) = 1 if and only if g = e, otherwise
δ(g) = 0).
• A sesquilinear form on A as〈∑

g∈G

agg ,
∑
h∈G

ahh
〉

=
∑
g,h∈G

āgah δ(g−1h) (29)

Proposition

For any X ,Y ∈ A,

〈X ,Y 〉 = ϕ(X ∗Y ) (30)

Proof : ϕ(g) = δ(g), for all g ∈ G.
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Linear automorphism group of A
• H the subgroup of G, defined by the adjoint action: ∀(h, g) ∈ H × G

g 7→ hgh−1 (31)

• The action of H on A extends by linearity on A

h.X =
∑
g∈G

ag hgh−1 . (32)

• H commutes with the ∗-involution: (h.X )∗ = hX ∗.

Proposition

∀(h,X ) ∈ H ×A, ϕ(h.X ) = ϕ(X ).

Proof: Consider a couple (h,X ) ∈ H ×A

ϕ(h.X ) =
∑
g∈G

ag ϕ(hgh−1) =
∑

g∈G|hgh−1=e

ag = ae = ϕ(X ) (33)

• H is an isometry group of A.
• κ(H,A) is a ∗-sublagebra of A.
• The restriction ϕ|κ(H,A) is a SPS for κ(H,A) and thereby proves that κ(H,A) is
semi-simple.
• The inner product of A should restrict on κ(H,A)

Proposition

κ(H,A) is a semi-simple ∗-algebra and is a Hilbert space.
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Ta operators

• Special base elements

Ta =
∑
g∈Ca

g (34)

where Ca is a particular conjugacy class. The label ‘a’ here is yet to be determine.

• A sufficient number of these elements generates the center of κ(H,A).

• In the case: G = Sn:
→ Ca = conjugacy class with 1 cycle of size a and all remaining cycles of size 1.
n = 3 , C2 = {(12)(3); (13)(2); (23)(1)}.

→ Ta’s commute with each other

TaTb = TbTa (35)

for a few number of T ′as, a = 2, 3, . . . , n − 1, {Ta} generates the center of C(Sn).
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K∞ algebra

• An infinite dimensional associative algebra obtained by summing K(n) over n

K∞ =
∞⊕
n=0

K(n) (36)

• Two associative products on this vector space.
• The product at fixed n: K∞ is an associative semi-simple algebra?
• Outer product on K∞:

E(σ1,σ2) =
∑
γ1∈Sn1

γ1σ1γ
−1
1 ⊗ γ1σ2γ

−1
1 ∈ K(n1)

E(τ1,τ2) =
∑
γ2∈Sn2

γ2τ1γ
−1
2 ⊗ γ2τ2γ

−1
2 ∈ K(n2)

◦ : K(n1)⊗K(n2)→ K(n1 + n2) (37)

E(σ1,σ2) ◦ E(τ1,τ2) =
∑

γ∈Sn1+n2

γ(σ1 ◦ τ 1)γ−1 ⊗ γ(σ2 ◦ τ 2)γ−1 = E(σ1◦τ1),(σ2◦τ2)

This outer product is related to the ring structure which has been described in detail,
using the representation basis in [de Mello Koch et al, arXiv:1707.01455 [hep-th]].
• More products, co-product and Hopf algebra structure?
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